7 research outputs found

    Novel sulphamoylated 2‑methoxy estradiol derivatives inhibit breast cancer migration by disrupting microtubule turnover and organization

    Get PDF
    BACKGROUND : The estrogen metabolite 2-methoxyestradiol (2ME2) and a number of synthesised derivatives have been shown to bind to microtubules thereby arresting cancer cells in mitosis which leads to apoptosis. In interphase cells, microtubules play an important role in the delivery of proteins to subcellular locations including the focal adhesions. In fact, focal adhesion dynamics and cell migration are in part regulated by microtubules. We hypothesised that novel 2ME2 derivatives can alter cell migration by influencing microtubule dynamics in interphase cells. In this report we describe 2ME2 derivatives that display anti-migratory capabilities in a metastatic breast cancer cell line through their effects on the microtubule network resulting in altered focal adhesion signalling and RhoA activity. METHODS : Cell migration was assayed using wound healing assays. To eliminate mitosis blockage and cell rounding as a confounding factor cell migration was also assessed in interphase blocked cells. Fluorescence confocal microscopy was used to visualise microtubule dynamics and actin cytoskeleton organisation while western blot analysis was performed to analyse focal adhesion signalling and RhoA activation. RESULTS : 2ME2 derivatives, ESE-one and ESE-15-one, inhibited cell migration in cycling cells as expected but equally diminished migration in cells blocked in interphase. While no significant effects were observed on the actin cytoskeleton, focal adhesion kinase activity was increased while RhoA GTPase activity was inhibited after exposure to either compound. Microtubule stability was increased as evidenced by the increased length and number of detyrosinated microtubules while at the same time clear disorganisation of the normal radial microtubule organisation was observed including multiple foci. CONCLUSIONS : ESE-15-one and ESE-one are potent migration inhibitors of metastatic breast cancer cells. This ability is coupled to alterations in focal adhesion signalling but more importantly is associated with severe disorganisation of microtubule dynamics and polarity. Therefore, these compounds may offer potential as anti-metastatic therapies.The National Research Foundation (NRF) of South Africa, the Cancer Association of South Africa (CANSA), the Medical Research Council (MRC) of South Africa, the Struwig Germishuysen Trust and the School of Medicine Research Committee of the University of Pretoria (RESCOM).http://www.cancerci.comgl2020Physiolog

    Lowered expression of tumor suppressor candidate MYO1C stimulates cell proliferation, suppresses cell adhesion and activates AKT

    Get PDF
    Myosin-1C (MYO1C) is a tumor suppressor candidate located in a region of recurrent losses distal to TP53. Myo1c can tightly and specifically bind to PIP2, the substrate of Phosphoinositide 3-kinase (PI3K), and to Rictor, suggesting a role for MYO1C in the PI3K pathway. This study was designed to examine MYO1C expression status in a panel of wellstratified endometrial carcinomas as well as to assess the biological significance of MYO1C as a tumor suppressor in vitro. We found a significant correlation between the tumor stage and lowered expression of MYO1C in endometrial carcinoma samples. In cell transfection experiments, we found a negative correlation between MYO1C expression and cell proliferation, and MYO1C silencing resulted in diminished cell migration and adhesion. Cells expressing excess of MYO1C had low basal level of phosphorylated protein kinase B (PKB, a.k.a. AKT) and cells with knocked down MYO1C expression showed a quicker phosphorylated AKT (pAKT) response in reaction to serum stimulation. Taken together the present study gives further evidence for tumor suppressor activity of MYO1C and suggests MYO1C mediates its tumor suppressor function through inhibition of PI3K pathway and its involvement in loss of contact inhibition.Royal Physiographic Society in Lund (Nilsson-Ehle Foundation) with grant numbers 30928, 32705 and 36388: KV. Wilhelm and Martina Lundgren Foundation: KV, AB. Assar Gabrielsson Research Foundation for Clinical Cancer Research with grant numbers FB11-15, FB12-26, FB13-05, FB14-46 and FB15-45: KV. Sahlgrenska University Hospital Foundation with grant number 8181: KV. The Knowledge Foundation with grant number HOÈ G12, 20120311: AB.http://www.plosone.orgam2016Physiolog

    Novel in silico-designed estradiol analogues are cytotoxic to a multidrug-resistant cell line at nanomolar concentrations

    Get PDF
    PURPOSE : 2-Methoxyestradiol (2ME) is a promising anticancer agent that disrupts the integrity and dynamics of the spindle network. In order to overcome the pharmacokinetic constraints of this compound, a panel of sulphamoylated estradiol analogues were in silico-designed by our laboratory. In this study, we analysed the potential of each analogue to induce cell death on a panel of cancer cell lines. Moreover, the mechanism of action of the most effective compounds was determined. METHODS : Cytotoxicity screening of the compounds and intermediates was performed on five different cancer cell lines to determine IG50 values. An in vitro tubulin polymerization assay was done to determine the effect of the drugs on tubulin polymerization while their intracellular effects on the microtubule network were assessed by immunofluorescence microscopy. RESULTS : IG50 calculations showed that the sulphamoylated analogues induce cytotoxicity at nanomolar concentrations in all cell lines, including the P-glycoprotein pump overexpressing multidrug-resistant uterine sarcoma cell line. The non-sulphamoylated compounds were only cytotoxic at micromolar ranges, if at all. The sulphamoylated compounds inhibited pure tubulin polymerization in a dose-dependent manner and induced microtubule destruction in cells after 24-h exposure. CONCLUSION : Results revealed that the novel sulphamoylated 2ME derivatives have potential as anti-cancer drugs, possibly even against chemoresistant cancer cells. These compounds disrupt the intracellular microtubule integrity which leads to mitotic block of the cells.The Research Development Programme of the University of Pretoria (RDP AOV840), the South African Medical Association (SAMA), the National Research Foundation (NRF Project # 86475, N00465, N00375, N00591), the Research Committee of the Faculty of Health Sciences, University of Pretoria (RESCOM), CANSA (AOV741, AOW228) and the Medical Research Council (MRC AOW110).http://link.springer.com/journal/2802016-02-28hb201

    Characterization of VP4, a minor core protein of African horse sickness virus with putative capping enzyme activity

    No full text
    African horse sickness virus (AHSV) affects equine populations around the world. It is the cause of a high rate of morbidity and associated large economic losses in affected regions. The virus is a segmented double stranded RNA virus and a member of Orbivirus genus in the Reoviridae family. The prototype member of the orbiviruses is bluetongue virus (STY) and other members include Chuzan virus and St. Croix River virus. These viruses are all characterized by a genome of ten dsRNA segments that encode at least ten different proteins. Three of the minor core proteins are found within the core of BTV. These are all associated with the RNA transcription complex and the enzymatic activities with which they are associated include an RNA polymerase (VP1), an RNA capping enzyme (VP4) and an RNA helicase (VP6). Genes homologous to the BTV genes that encode these proteins are found in all members of the Orbivirus genus. The aim of this thesis is to characterize VP4 of AHSV, the capping enzyme candidate, and to compare it to other orbivirus capping enzymes. Possible functional motifs and regions of importance within the orbivirus capping enzymes will be identified. The gene will also be expressed and used to perform assays to characterize the different enzymatic activities of VP4. The VP4 cDNA of AHSV serotype 3 was cloned and sequenced. From the full-length verified nucleotide sequence an open reading frame was identified and used to predict the amino acid sequence. These were compared to other orbivirus species including STY, Chuzan virus and St. Croix River virus. These alignments identified a number of highly conserved regions, consisting of four or more amino acids conserved between all the sequences analyzed. A fibronectin type 3-like motif, containing 12 conserved amino acids, was identified which could be responsible for protein binding. This motif contains 12 conserved amino acids making it a good candidate for a functional motif. Conservation does not, however, always predict regions of importance. In BTV a lysine-containing motif was identified to be responsible for GMP binding. This region is not conserved between the different viruses. AHSV has a motif containing a lysine residue similar to the motif identified in rotavirus and reovirus. Two other motifs described in BTV were also not conserved in the other viruses. One of them, a leucine zipper, was shown to dimerize BTV VP4. Phylogenetically, AHSV and Chuzan virus are the most closely related while BTV is more distant and St. Croix River virus forms a distinct out-group when the different VP4 sequences are compared. AHSV-3 VP4 was expressed as a histidine-tagged protein in the baculovirus expression system. Not unexpectedly, the protein was found to be insoluble, similar to BTV VP4 produced by means of the same system. However, whereas BTV VP4 could be solubilized by the addition of salt the AHSV VP4 remained insoluble at high salt concentrations. Several adjustments were made. Cells were lysed in a high salt buffer, the pH of the buffers was adjusted and sucrose cushions were used but none of the methods was found to improve the yield of soluble VP4 significantly. However, the pellet containing VP4 was relatively empty of contaminating protein and, therefore, a number of enzymatic assays were performed with the pellet. Assays for inorganic phosphatase and nucleotide phosphatase were performed. Strikingly, both assays indicated the presence of active phosphatases in the WT and VP4 pellets. Also, an assay was performed for guanylyltransferase activity but no activity was observed for this assay. The sequence data therefore points to VP4 as the probable capping enzyme although it may have a different structural complex. The failure to produce a reliable source of soluble purified AHSV VP4 made it impossible to provide evidence to confirm the associated enzymatic activities.Dissertation (MSc(Genetics))--University of Pretoria, 2005.Geneticsunrestricte

    A novel 2-methoxyestradiol analogue is responsible for vesicle disruption and lysosome aggregation in breast cancer cells

    No full text
    BACKGROUND : 2-Methoxyestradiol (2ME2) is an endogenous metabolite of 17-ÎČ-estradiol with anti-proliferative and anti-angiogenic properties. Due to 2ME2’s rapid metabolism and low oral bioavailability in in vivo settings, 2ME2 analogues have been designed to alleviate these issues. One of these compounds is 2-ethyl-3-O-sulphamoyl-estra-1,3,5(10)16-tetraene (ESE-16). A previous work alluded to the ability of ESE-16 to induce autophagic cell death. Therefore, we investigated the mode of action of ESE-16 by studying its effects on autophagy, vesicle formation, and lysosomal organisation. SUMMARY : Vesicle formation and autophagy induction were analysed by transmission electron microscopy (TEM), monodansylcadaverine (MDC) staining and Lysotracker staining, while autophagosome turnover was analysed using microtubule-associated protein 1A/1B-light chain 3 (LC3 lipidation) analysis. MDC staining of acidic vesicles revealed an increase both in the number and size of vesicles after ESE-16 exposure. This was confirmed by TEM. Lysotracker staining indicated an increase in the size of lysosomes, as well as changes in their distribution within the cell. However, autophagy was not induced, since LC3 lipidation did not increase after exposure to ESE-16. KEY MESSAGES : This study showed that ESE-16 exposure leads to the aggregation of acidic vesicles, identified as lysosomes, not accompanied by an induction of autophagy. Therefore, ESE-16 disrupts normal endocytic vesicle maturation likely through the inhibition of the microtubule function.Grants awarded to Prof AM Joubert from the Medical Research Council of South Africa (AOS536, AOW110, AK076; AL343), the Cancer Association of South Africa (AOW228, A0V741, AK246), RESCOM, School of Medicine (Faculty of Health Sciences, University of Pretoria), the National Research Foundation of South Africa (N00375, AL239) and the Struwig-Germeshuysen Cancer Research Trust of South Africa (AN074).https://www.karger.com/PHA2019-04-19hj2018Physiolog

    Rac controls PIP5K localisation and PtdIns(4,5)P2 synthesis, which modulates vinculin localisation and neurite dynamics

    No full text
    In N1E-115 cells, neurite retraction induced by neurite remodelling factors such as lysophosphatidic acid, sphingosine 1-phosphate and semaphorin 3A require the activity of phosphatidylinositol 4-phosphate 5-kinases (PIP5Ks). PIP5Ks synthesise the phosphoinositide lipid second messenger phosphatidylinositol(4,5) bisphosphate [PtdIns(4,5)P-2], and overexpression of active PIP5K is sufficient to induce neurite retraction in both N1E-115 cells and cerebellar granule neurones. However, how PIP5Ks are regulated or how they induce neurite retraction is not well defined. Here, we show that neurite retraction induced by PIP5K beta is dependent on its interaction with the low molecular weight G protein Rac. We identified the interaction site between PIP5K beta and Rac1 and generated a point mutant of PIP5K beta that no longer interacts with endogenous Rac. Using this mutant, we show that Rac controls the plasma membrane localisation of PIP5K beta and thereby the localised synthesis of PtdIns(4,5)P-2 required to induce neurite retraction. Mutation of this residue in other PIP5K isoforms also attenuates their ability to induce neurite retraction and to localise at the membrane. To clarify how increased levels of PtdIns(4,5)P-2 induce neurite retraction, we show that mutants of vinculin that are unable to interact with PtdIns(4,5)P-2, attenuate PIP5K- and LPA-induced neurite retraction. Our findings support a role for PtdIns(4,5)P-2 synthesis in the regulation of vinculin localisation at focal complexes and ultimately in the regulation of neurite dynamic
    corecore